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The reproducibility crisis, i.e. the replicability crisis

The p-value crisis

How to make a decision? What is the question ?

The Bayesian learning process in Pharmaceutical R&D

The posterior predictive distribution

The power, the Bayesian power and the Assurance

The missing component: the elephant in the room ?

Take away message



The Replicability crisis: the beginning 



Nature, 2014



As the American Statistical Association 
officially reminded in March 2016….



The American Statistical Association reminded in a press release some
key points:

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that 

the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on 

whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the 

importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or 

hypothesis.



Reproducibility now a public concern



Emergency meeting: ASA Symposium in October 2017.



The American Statistician - 2019

https://tandfonline.com/doi/full/10.1080/00031305.2019.1583913


Maybe the key issue is the training in statistics
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S. Goodman: The American Statistician - 2019



Nature March 2019
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National Academies May 2019
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To « p » or not to « p »: what is the question?



The objective: is my product effective ?

How  to make a decision ?

A

B

What is the probability of obtaining the observed data, if the 

product is not effective?

What is the probability that the product is effective, given the 

observed data?
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Two different ways to make a decision based on

A
Pr 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐝𝐚𝐭𝐚 𝐩𝐫𝐨𝐝𝐮𝐜𝐭 𝐢𝐬 𝐧𝐨𝐭 𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 )

◼ Better known as the p-value concept

◼ Used in the null hypothesis test (or decision)

◼ This is the likelihood of the data assuming an hypothetical 

explanation (eg the “null hypothesis”)

◼ Classical statistics perspective (Frequentist) 

B
Pr 𝐩𝐫𝐨𝐝𝐮𝐜𝐭 𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐝𝐚𝐭𝐚 )

◼ Bayesian perspective

◼ It is the probability of efficacy given

the data
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Nature 2017

1999

Nothing has 

changed in 20 

years



What is the question ?

New patient : Cancer? Diagnostic test Test Result

What is the probability that the patient has Cancer given the observed 

positive results ?

Interpretation ?



Context

A disease D with a low prevalence

1 % of the population is diseased = D+

Major consequences if the disease is not detected



A problem of decision making

The accuracy of a diagnostic test is assessed as follows:

Sensitivity: Pr 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝐬𝐮𝐥𝐭 𝐜𝐚𝐧𝐜𝐞𝐫)

Specificity: Pr 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐫𝐞𝐬𝐮𝐥𝐭 𝐧𝐨 𝐜𝐚𝐧𝐜𝐞𝐫)

In practice: 

Given that the diagnostic test result is positive, 

what is the probability you truly have cancer?

Pr 𝐜𝐚𝐧𝐜𝐞𝐫 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝐬𝐮𝐥𝐭 ) = ?
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Example

prevalence = 1%

sensitivity = 86%

specificity = 88%

Pr 𝐜𝐚𝐧𝐜𝐞𝐫 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝐬𝐮𝐥𝐭) =
1

12 + 1
= 0.077

Agresti, A. (2007). An Introduction to Categorical Data Analysis. Wiley, 2nd ed.

Colquhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open sci. 1(3): 140216

How can that be so low?

The small proportion of errors for 

the large majority of women who 

do not have breast cancer 

swamps the large proportion of 

correct diagnoses for the few 

women who have it.
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The clinical trial analogy
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Pr 𝐝𝐫𝐮𝐠 𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐝𝐚𝐭𝐚) = ?

effective? clinical trial data

depends largely on prior probability that there is a real effect
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“If you use p = 0.05 to suggest that you have made a discovery, you will 
be wrong at least 30% of the time.”
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Colquhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open sci. 1(3): 140216.

Pr 𝐫𝐞𝐚𝐥 𝐞𝐟𝐟𝐞𝐜𝐭 𝐩 < 0.05) =
80

80 + 45
= 0.64
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prior probability



“If you use p = 0.05 “….when you are in early discovery 

Pr 𝐫𝐞𝐚𝐥 𝐞𝐟𝐟𝐞𝐜𝐭 𝐩 < 0.05) =
8

8 + 50
= 𝟎. 𝟏𝟒 ‼‼

prior probability

P(real)=0.01

No Effect

990 tests

Effect =

10 tests

8 true

+ tests

2 false 

- tests

940 true

- tests

50 false 

+ tests
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prior probability

P(real)=0.7

No Effect

300 tests

Effect =

700 tests

560 true

+ tests

140 false 

- tests

285 true

- tests

15 false 

+ tests

Pr 𝐫𝐞𝐚𝐥 𝐞𝐟𝐟𝐞𝐜𝐭 𝐩 < 0.05) =
560

560 + 15
= 𝟎. 𝟗𝟕

…. if the prior is good 



False “Discovery" Rate for p<0.05, power=0.8 as function of Prior 
Probability
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False “Discovery” Rate for p<0.05, power=0.8 as function of Prior 
Probability
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THE VALUE OF 
BAYESIAN APPROACH
IN DRUG 
DEVELOPMENT
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Bayesian inference is the mechanism used to update the state of 
knowledge 

prior information 

x

data information posterior information 

The process to arrive at a posterior distribution makes use of Bayes’ formula.

𝑝(𝜃) 𝑝 data 𝜃) 𝑝 𝜃 data)



The coin flipping experiment

43 heads in 100 flips

𝐏𝐫 < 𝟎. 𝟓 = 𝟎. 𝟗𝟒𝐏𝐫 < 𝟎. 𝟓 ≈ 𝟎. 𝟕𝟓

prior information data information posterior information 

x



-1.25-1.00-0.75-0.50-0.25

Mean difference (smaller is better)

CD7414 1% White Perfect vs. Vehicle White Perfect

Ranking by Formula against Rucinol for Delta E change from baseline

Posterior density of Mean Differences

Day = 4715

CD7414 1% White Perfect vs. Vehicle White Perfect

Bayesian Model: change = base + treatment; random subject study study*formula. Flat priors.

0.25                               0.50                               0.75                                 1                 1.25

Clinical end-point

Decision rules based on Posterior Probability



Drug development is a learning process

Discovery
pre-clinical

Phase I Phase II Phase III



We now have computing power 
to apply Bayesian statistics
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Regulatory point of view

33

2010 & 2016 Guidance for medical device clinical trials

Guidance 

for Industry and FDA Staff 

Guidance for the Use of 

Bayesian Statistics in 

Medical Device Clinical Trials 

Document issued on: February 5, 2010 



FDA CID initiative
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Historical control
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Part II: Power, Bayesian power and Assurance



Power vs assurance
independent samples t-test (H0: 𝜇1 = 𝜇2 vs H1: 𝜇1 ≠ 𝜇2)
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A power calculation takes a particular value of 

the effect within the range of possible values 

given by H1 and poses the question: if this 

particular value happens to obtain, what is the 

probability of coming to the correct conclusion 

that there is a difference?

𝜇1 = 100;

𝜇2 = 120;

𝜎1
2 = 𝜎2

2 = 39
very strong priors!

assumptions:

frequentist approach (power)

assumptions:



Power vs assurance
independent samples t-test (H0: 𝜇1 = 𝜇2 vs H1: 𝜇1 ≠ 𝜇2)
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In order to reflect the uncertainty, a large number of effect 

sizes, i.e. (𝜇1−𝜇2)/𝜎pooled, are generated using the prior 

distributions. 

A power curve is obtained for each effect size

the expected (weighted by prior beliefs) power curve is 

calculated

Note1: Given those priors, using the Frequentist power 

approach, the Probability of Success of the trial is 50%

Note2: about 50% of Phase III trials are failing because of 

lack of efficacy (S. Wang, FDA, 2008)

bayesian approach (assurance)

assumptions:



(Frequentist) Power                                  Assurance
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Let R denote the rejection of the null 

hypothesis, the power is, assuming 

parameter values of 𝜽 = 𝜽∗

𝜋 𝜽∗, 𝑛 ≔ Pr(𝑅|𝜽∗, 𝒏)

It is a conditional probability. It is 

conditional on the parameters of the 

model, e.g. the “true effect size” in a 

frequentist test and the sample size.

“Assurance is the unconditional probability 

that a trial will lead to a specific outcome”

𝛾 𝑛 ≔ ∫ 𝜋 𝜃, 𝑛 𝑓 𝜃 𝑑𝜃
𝛾(𝑛) ≔ Pr 𝑅 = 𝐸𝜃[𝜋 𝜽 ]

It is thus also a function of n (and eventually 

other nuisance parameters)

The assurance is the expected power over all 

possible values of theta (-> over its prior 

distribution…)



An example: Power vs Assurance
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In this example the assurance

converges to 0.793, that is the 

prior probability that the new drug 

is indeed superior



Difference Simulations/Predictions
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Simulations

the “new observations” are drawn from 
distribution “centered” on estimated 
location and dispersion parameters 
(treated as “true values”).

Predictions

the uncertainty of parameter estimates 
(location and dispersion) is taken into 
account before drawing “new 
observations” from relevant distribution



Predictions
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Given the model and the posterior distribution of its parameters, what are the plausible values for a 

future observation ෤𝑦?

𝑝 ෤𝑦 𝑑𝑎𝑡𝑎 = න𝑝 ෤𝑦 𝜃 𝑝 𝜃 𝑑𝑎𝑡𝑎 𝑑𝜃

Model Posterior

𝑁 𝜃, 𝜎2



Note: It’s easy to approximate the predictive distribution from 
Frequentist outputs

“Posterior” F. Outputs
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Part III: The missing component



The elephant in the room? The study-to-study variability
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You know this: Meta-analysis showing study-to-study differences 

© PharmaLex 46



Different scenarios may happen
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Trial

Trial Trial

Trial

No variability Groups vary together (r=1)

Groups vary independently (r=0) Groups vary with some dependencies (r~0.5)



If you do one trial you may get one of those outcomes….
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Trial

Trial Trial

Trial

No variability Groups vary together

Groups vary independently Groups vary with some dependencies



If you do two trials you may get one of those outcomes….
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Trial

Trial Trial

Trial

No variability Groups vary together

Groups vary independently Groups vary with some dependencies

Does this new treatment works ?



Impact of study-to-study variability
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Assumptions are made that there is no study-to-study 

variability. 

Everyone know there is such variability but this is 

ignored in design, power calculation, evaluation, …..

This variance component is fundamental

It is related to the “replicability” issue, achieving a 

conclusion regardless of the study

If ignored and existing:

− then there is a major risk of type I error-inflation!

− the estimates are biased since confounded with 

study effect

− It violates fundamental DoE practices: maximize 

D-optimality, ie sources of variability in studies

Inflated Type 1 error 



Study “formats”: example in pre-clinical pharmacology
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Classic (Common practice):

Model: 𝑌𝑖𝑗 = 𝜇 + 𝑡𝑖 + 𝜀𝑖𝑗

Optimal designs:

Intermediate design

Model: 𝑌𝑖𝑗𝑘 = 𝜇 + 𝑡𝑖 + 𝑟𝑗 + 𝜀𝑖𝑗𝑘

− 𝑟𝑗 ~ 𝑁 0, 𝜎𝑠𝑡𝑢𝑑𝑦
2 , random 

effect due to the jth study, 

Same for both groups 

Extreme design

Model: 𝑌𝑖𝑗 = 𝜇 + 𝑡𝑖 + 𝜀𝑖𝑗

51© PharmaLex

3 x 3

9 x 1

1 x 9



Performance comparison of the tested designs (“formats”) 
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Current approach -> ‘’classic” design (all in one 

study)

Convention (USP <1032>)

− “Convert bias into lack of precision of the 

estimate”

− Control precision with sample size

Concept of study “format”: 

N(total) = R (runs) x r (replicates)
Optimal

designs 

Optimal designs allow to control for Type I error in all cases

Classic 

design



P
o

w
e

r



Improving precision of measurements by adding noise sources

Assume that:

− 𝜃 is the parameter of interest 

− you can perform R studies of r patients

The variance of 𝜃 is: 𝑉 𝜃 =
𝜎𝑆𝑡𝑢𝑑𝑦
2

𝑅
+

𝜎𝑟
2

𝑅×𝑟

Currently most consider that:

𝑉 𝜃 =
𝜎𝑟
2

1 × 𝑟

But in reality it is:

𝑉 𝜃 =
𝜎𝑆𝑡𝑢𝑑𝑦
2

1
+

𝜎𝑟
2

1 × 𝑟

How to design trials / allocate patients to 

have best precision of 𝜃 ?

σStudy
2 ≪ σr

2

1 trial, 10 patients

𝜎𝑆𝑡𝑢𝑑𝑦
2

𝑅
+

𝜎𝑟
2

𝑅×𝑟
= 

3

1
+

10

1×10
= 4

2 trials, 5 patients/trial

𝜎𝑆𝑡𝑢𝑑𝑦
2

𝑅
+

𝜎𝑟
2

𝑅×𝑟
= 

3

2
+

10

2×5
= 2.5

σStudy
2 ≫ σr

2

1 trial, 10 patients

𝜎𝑆𝑡𝑢𝑑𝑦
2

𝑅
+

𝜎𝑟
2

𝑅×𝑟
= 

10

1
+

3

1×10
= 10.3

2 trials, 5 patients/trial

𝜎𝑆𝑡𝑢𝑑𝑦
2

𝑅
+

𝜎𝑟
2

𝑅×𝑟
= 

10

2
+

3

2×5
= 5.3
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Conclusions: To reduce partially the issue of Replicability:
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1. What is the question ?

2. Consider the study-to-study variance component in designing and sizing trials

− Available via literature and control groups used in many trials

3. Consider the uncertainty of parameters estimates

4. Use prior distributions to compute the Assurance instead of the Power

− Focus on probability of success of the trial beyond the power

5. Use Bayesian thinking and practices all the way through

− This is a easy way to carry on the uncertainty

− This this available now

− This is the answer to most of your questions:  Pr(drug is effective | data )
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September 20 Short course on 

Bayesian Complex Innovative Designs: a path for regulatory acceptance

Telba Irony FDA Scott Berry Berry Consultants

John Scott FDA Roger Lewis UCLA and Berry Consultants

Dionne Price FDA Karen Price Lilly



Follow us on social media

@PharmalexGlobal/pharmalex-gmbh
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